

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/probot/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/probot/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Deploy

Every plugin can either be deployed as a stand-alone bot, or combined with other plugins in one deployment.

Heads up! Note that most plugins in the @probot organization [https://github.com/search?q=topic%3Aprobot-plugin+org%3Aprobot&type=Repositories] have an official hosted integration that you can use for your open source project. Use the hosted instance if you don’t want to deploy your own.

Combining plugins

To deploy a bot that includes multiple plugins, create a new app that has the plugins listed as dependencies in package.json:

{
 "name": "my-probot",
 "priate": true,
 "dependencies": {
 "probot-autoresponder": "~1.0",
 "probot-configurer": "~1.0",
 },
 "scripts": {
 "run": "probot run"
 },
 "probot": {
 "plugins": [
 "probot-autoresponder",
 "probot-configurer"
]
 }
}

Heroku

TODO: Generic docs for deploying a plugin to Heroku

Plugins

A plugin is just a Node.js module [https://nodejs.org/api/modules.html] that exports a function:

module.exports = robot => {
 // your code here
};

The robot parameter is an instance of Robot and gives you access to all of the bot goodness.

Receiving GitHub webhooks

GitHub webhooks [https://developer.github.com/webhooks/] are fired for almost every significant action that users take on GitHub, whether it’s pushes to code, opening or closing issues, opening or merging pull requests, or commenting on a discussion.

Many robots will spend their entire day responding to these actions. robot.on will listen for any GitHub webhook events:

module.exports = robot => {
 robot.on('push', async (event, context) => {
 // Code was pushed to the repo, what should we do with it?
 robot.log(event);
 });
};

The robot can listen to any of the GitHub webhook events [https://developer.github.com/webhooks/#events]. event object includes all of the information about the event that was triggered, and event.payload has the payload delivered by GitHub.

Most events also include an “action”. For example, the issues [https://developer.github.com/v3/activity/events/types/#issuesevent] event has actions of assigned, unassigned, labeled, unlabeled, opened, edited, milestoned, demilestoned, closed, and reopened. Often, your bot will only care about one type of action, so you can append it to the event name with a .:

module.exports = robot => {
 robot.on('issues.opened', async (event, context) => {
 // An issue was just opened.
 });
};

Interacting with GitHub

Probot uses GitHub Integrations [https://developer.github.com/early-access/integrations/]. An integration is a first-class actor on GitHub, like a user (e.g. @defunkt [https://github/defunkt]) or a organization (e.g. @github [https://github.com/github]). The integration is given access to a repository or repositories by being “installed” on a user or organization account and can perform actions through the API like commenting on an issue [https://developer.github.com/v3/issues/comments/#create-a-comment] or creating a status [https://developer.github.com/v3/repos/statuses/#create-a-status].

Each event delivered includes an ID of the installation that triggered it, which can be used to authenticate. robot.auth(id) will give your plugin an authenticated GitHub client that can be used to make API calls.

module.exports = robot => {
 robot.on('issues.opened', async (event, context) => {
 const github = await robot.auth(event.payload.installation.id);
 // do something useful with the github client
 });
};

Note: robot.auth is asynchronous, so it needs to be prefixed with a await [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await] to wait for the magic to happen.

The github object returned from authenticating is an instance of the github Node.js module [https://github.com/mikedeboer/node-github], which wraps the GitHub API [https://developer.github.com/v3/] and allows you to do almost anything programmatically that you can do through a web browser.

Here is an example of an autoresponder plugin that comments on opened issues:

module.exports = robot => {
 robot.on('issues.opened', async (event, context) => {
 const github = await robot.auth(event.payload.installation.id);

 // `context` extracts information from the event, which can be passed to
 // GitHub API calls. This will return:
 // {owner: 'yourname', repo: 'yourrepo', number: 123, body: 'Hello World!}
 const params = context.issue({body: 'Hello World!'})

 // Post a comment on the issue
 return github.issues.createComment(params);
 });
}

See the full API docs [https://mikedeboer.github.io/node-github/] to see all the ways you can interact with GitHub. Some API endpoints are not available on GitHub Integrations yet, so check which ones are available [https://developer.github.com/early-access/integrations/available-endpoints/] first.

Pagination

Many GitHub API endpoints are paginated. The github.paginate method can be used to get each page of the results.

const github = await robot.auth(event.payload.installation.id);

github.paginate(github.issues.getAll(context.repo()), issues => {
 issues.forEach(issue => {
 robot.console.log('Issue: %s', issue.title);
 });
});

Running plugins

Before you can run your plugin against GitHub, you’ll need to set up your development environment and configure a GitHub Integration for testing. You will the the ID and private key of a GitHub Integration to run the bot.

Once you have an integration created, install probot:

$ npm install -g probot

and run your bot, replacing 9999 and private-key.pem below with the ID and path to the private key of your integration.

$ probot run -i 9999 -P private-key.pem ./autoresponder.js
Listening on http://localhost:3000

Once your bot is running, you’ll need to use ngrok to receive GitHub webhooks as described in the development documentation.

Publishing your bot

Plugins can be published in NPM modules, which can either be deployed as stand-alone bots, or combined with other plugins.

Use the plugin-template [https://github.com/probot/plugin-template] repository to get started building your plugin as a node module.

$ curl -L https://github.com/probot/plugin-template/archive/master.tar.gz | tar xvz
$ mv plugin-template probot-myplugin && cd probot-myplugin

Next

	See the full Probot API

	Tips for development

	Deploy your plugin

API

This is the official probot API. Anything not documented here is subject to change without notice.

Robot

The robot parameter available to plugins is an instance of Robot.

module.exports = robot => {
 // your code here
};

on

robot.on will listen for any GitHub GitHub webhooks [https://developer.github.com/webhooks/], which are fired for almost every significant action that users take on GitHub. The on method takes a callback, which will be invoked with two arguments when GitHub delivers a webhook:

	event - the event that was triggered, including event.payload which has the payload from GitHub.

	context - helpers for extracting information from the event, which can be passed to GitHub API calls

module.exports = robot => {
 robot.on('push', (event, context) => {
 // Code was pushed to the repo, what should we do with it?
 robot.log(event);
 });
};

Most events also include an “action”. For example, the issues [https://developer.github.com/v3/activity/events/types/#issuesevent] event has actions of assigned, unassigned, labeled, unlabeled, opened, edited, milestoned, demilestoned, closed, and reopened. Often, your bot will only care about one type of action, so you can append it to the event name with a .:

module.exports = robot => {
 robot.on('issues.opened', event => {
 // An issue was just opened.
 });
};

auth

robot.auth(id) will return an authenticated GitHub client that can be used to make API calls. It takes the ID of the installation, which can be extracted from an event:

module.exports = function(robot) {
 robot.on('issues.opened', async (event, context) => {
 const github = await robot.auth(event.payload.installation.id);
 });
};

Note: robot.auth is asynchronous, so it needs to be prefixed with a await [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await] to wait for the magic to happen.

The github object returned from authenticating is an instance of the github Node.js module [https://github.com/mikedeboer/node-github], which wraps the GitHub API [https://developer.github.com/v3/] and allows you to do almost anything programmatically that you can do through a web browser.

log

robot.log is a logger backed by bunyan [https://github.com/trentm/node-bunyan].

robot.log("This is a debug message");
robot.log.debug("…so is this");
robot.log.trace("Now we're talking");
robot.log.info("I thought you should know…");
robot.log.warn("Woah there");
robot.log.error("ETOOMANYLOGS");
robot.log.fatal("Goodbye, cruel world!");

The default log level is debug, but you can change it by setting the LOG_LEVEL environment variable to trace, info, warn, error, or fatal.

Context

Context has helpers for extracting information from the webhook event, which can be passed to GitHub API calls.

repo

Return the owner and repo params for making API requests against a repository. The object passed in will be merged with the repo params.

const params = context.repo({path: '.github/stale.yml'})
// Returns: {owner: 'username', repo: 'reponame', path: '.github/stale.yml'}

issue

Return the owner, repo, and number params for making API requests against an issue or pull request. The object passed in will be merged with the repo params.

const params = context.issue({body: 'Hello World!'})
// Returns: {owner: 'username', repo: 'reponame', number: 123, body: 'Hello World!'}

isBot

Returns a boolean if the actor on the event was a bot.

Development

To run a plugin locally, you’ll need to create a GitHub Integration and configure it to deliver webhooks to your local machine.

	Make sure you have a recent version of Node.js [https://nodejs.org/] installed

	Install ngrok [https://ngrok.com/download] ($ brew cask install ngrok on a mac), which will expose the local server to the internet so GitHub can send webhooks

	Run $ ngrok http 3000 to start ngrok, which should output something like Forwarding https://4397efc6.ngrok.io -> localhost:3000

	Create a new GitHub Integration [https://github.com/settings/integrations/new] with:
	Callback URL and Webhook URL: The full ngrok url above. For example: https://4397efc6.ngrok.io/

	Webhook Secret: development

	Permissions & events needed will depend on how you use the bot, but for development it may be easiest to enable everything.

	Download the private key and move it to private-key.pem in the project directory

	Edit .env and set INTEGRATION_ID to the ID of the integration you just created.

	With ngrok still running, open another terminal and run $ npm start to start the server on http://localhost:3000

You’ll need to create a test repository and install your Integration by clicking the “Install” button on the settings page.

Whenever you com back to work on the app after you’ve already had it running once, then you need to:

	Run $ npm start

	Run $ ngrok http 3000 in another terminal window

	ngrok will use a different URL every time it is restarted, so you will have to go into the settings for your Integration [https://github.com/settings/integrations] and update all the URLs.

Debugging

	Always run $ npm install and restart the server if package.json has changed.

	To turn on verbose logging, start server by running: $ LOG_LEVEL=trace npm start

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

